Achieving System Qualities Through
Software Architecture Il

The meaning of “design”
Modules and the module structure

AS LEAD SOFTWARE | 5[Wou T wIsH WED H TLLPUT

ENGINEER, I GIVE YOU 3| DESIGNED IT WITH H THIS WITH
5| THE FEATURES LISTED |2 THE OTHER
$| ON THE BOX. THAT I whatr e ORS
£ WouLo wave eeeN H OF H
3 AWESOME { LIFE COULD
IS) H= HAVE BEEN
H Y ® § EXCELLENT.
) :
H LLLu
8 il

CIS 422/522

Qualities Established in Architecture

Behavioral (observable) Developmental Qualities
+ Performance « Modifiability(ease of change)
Security « Portability
Availability * Reusability
+ Reliability - Ease of integration
+ Usability * Understandability
« Provide independent work
assignments
Properties resulting from the Properties resulting from the
properties of components, properties components,
connectors and interfaces tcr?aqn:ﬁts?r:tﬁclir:edsilgéetrifrﬁ?s
that exist at run time. whether or not they have any
distinct run-time
manifestation.

CIS 422/522 Winter 2014

Functionality, Architecture, and
Quality Attributes

Functionality and quality attributes are
orthogonal

Achieving quality attributes must be
considered throughout design,
implementation, and deployment

+ Satisfactory results depends on:

— Getting the big picture (architecture) right

— Then getting the details (implementation) right

CIS 422/522 Winter 2014

Example: Performance

+ Ex: Performance depends on
— How much inter-component communication is
necessary (Arch)
— What functionality has been allocated to each
component (Arch)

— How shared resources are allocated (Arch)

— The choice of algorithms to implement functionality
(Non-arch)

— How algorithms are coded (Non-arch)

CIS 422/522 Winter 2014

CIS 422/522

Product Development Cycle and

Business Goals Design decisions,
Hara 3 . i
Software. tradeoffs and constraints Goal: Keep architectural
Marketing €--mmmmmmmmmmm e 3 design decisions in synch
other Se o | with developmental goals
So 1 + ConOps <> Req <> Design
[ili
Product Plannine So \ Traceability to code
Economic Evaluation SO |+ Mechanisms for
Development Strategy 4 o
Markoting Stratogy - o | maintaining “intellectual
Prioritization SO 1 control”
sustegic |, Requirements So
an Capabilities \\ Stakeholder goals
Qualties [
p: BRD
°""§u;,,‘;;s Reusability

-
1

Traceability
-

Architecture
Tradeofts of
quality goals
o3ns Detailed
Design
Requirements [} s
Specification) |
1 Architecture
Design e
Documents Internal
1 Design 4,
Documentation| |,

CIS 422/522 Winter 2014

Definition

Software Engineering Architecture

+ Goal is to keep developmental goals and
architectural capabilities in synch

+ Proceed from an understanding of desired
qualities to an acceptable system design
— Balance of stakeholder priorities and constraints
— Requires making design tradeoffs

— Documentation must communicate how this is
accomplished

CIS 422/522 Winter 2014

Implications for the Development
Process

CIS 422/522

Implies need to address architectural concerns in the
development process:

+ Understanding the “business case” for the system

+ Understanding the quality requirements

+ Designing the architecture

+ Representing and communicating the architecture
+ Analyzing or evaluating the architecture

+ Implementing the system based on the architecture

+ Ensuring the implementation conforms to the
architecture

CIS 422/522 Winter 2014

What is “design?”

Meaning of “Design”

What does it mean to say that we are going to
“design the software?”

What is the basis for making a design decision?
How do we know when we are done?
If we did a good job? What makes a good design?

KIDSEXCHANGE

The Design Space

+ A Design: is (a representation of) a
solution to a problem
— Represents a set of choices
- Typically very large set of possible
choices
+ Must navigate through possibilities
« Invariably requires tradeoffs
our — Possible choices are limited by
design assumptions and constraints
+ Must be ISO 2000 compliant,
legacy compatible, etc.
“Good" « May not use v.1 library routines
(designs) — Some designs are better than
others (notion of good design)

Problem
Space

Solutions

<

Design
Constrains

CIS 422/522 Winter 2014

Design Means...

+ Design Goals: the purpose of design is to solve
some problem in a context of assumptions and
constraints

— Solution: acceptable balance of system qualities

— Assumptions: what must be true of the design

— Constraints: what should not be true

Process: design proceeds through a sequence of
decisions

— A good decision brings us closer to the design goals
— An idealized design process systematically makes

good decisions

— Any real design process is chaotic

Good Design: by definition a good design is one
that satisfies the design goals

CIS 422/522 Winter 2014 1

CIS 422/522

Elements of Architectural Design

+ Design goals
— What are we trying to accomplish in the
decomposition?
+ Relevant Structure
— How to we capture and communicate design
decisions?
— Which structures should we use?
+ Decomposition principles
— How do we distinguish good design decisions?
— What decomposition (design) principles support the
objectives?
+ Evaluation criteria
— How do | tell a good design from a bad one?

CIS 422/522 Winter 2014

Which structures should we use?

Structure Components Interfaces Relationships

Calls Structure | Programs Program interface Invokes with
(methods, and parameter parameters
services) declarations (Acalls B)

Data Flow Functional tasks | Data types or Sends-data-to

structures

Process Sequential Scheduling and Runs-concurrently-
program synchronization with, excludes,
(process, thread, | constraints precedes
task)

+ Choice of structure depends the specific design goals
— Compare to architectural blueprints

+ Choose minimal set of structures that
— Make key design issues visible
— Communicate key design decisions

CIS 422/522 Winter 2014 13

CIS 422/522

Some Key Architectural Structures

Module Structure

— Decomposition of the system into work assignments or
information hiding modules

— Most influential design time structure

+ Modifiability, work assignments, maintainability, reusability,
understandability, etc.

Uses Structure
— Determine which modules may use one another’s services

— Determines subsetability, ease of integration (e.g. for
increments)

Process Structure
— Decomposition of the runtime code into threads of control
— Determines potential concurrency, real-time behavior

CIS 422/522 Winter 2014 14

Designing the Module Structure

Modularization

For any large, complex system, must divide
the coding into work assignments (WBS)
Each work assignment is called a “module”
Properties of a “good” module structure

— Parts can be designed independently

— Parts can be tested independently

— Parts can be changed independently

— Integration goes smoothly

CIS 422/522 Winter 2014 16

CIS 422/522

Modularization Goals

Reduces complexity, improves manageability
Coding

— Can write modules with little knowledge of other modules
— Replace modules without reassembling the whole system
Managerial

— Allows concurrent development

— Avoids “Mythical Man Month” effect (“adding people to a late
software project makes it later”)

Flexibility/Maintainability

— Anticipated changes affect only a small number of modules
— Can calculate the impact and cost of change
Review/communicate

— Can understand or review the system one module at a time

CIS 422/522 Winter 2014 17

Notional Modules

o

Interface

Encapsulated|

Interface \
Encapsulated

Interface

Interface Interface

CIS 422/522 Winter 2014 18

What is a module?

« Concept due to David Parnas (conceptual basis for
objects)
» A module is characterized by two things:

— lts interface: services that the module provides to other parts
of the systems

— Its secrets: what the module hides (encapsulates). Design/
implementation decisions that other parts of the system
should not depend on

+ Modules are abstract, design-time entities

— Modules are “black boxes” — specifies the visible properties
but not the implementation

— May, or may not, directly correspond to programming
components like classes/objects
« E.g., one module may be implemented by several objects

CIS 422/522 Winter 2014 19

CIS 422/522

A Simple Module

A simple integer stack

— push: push integer on stack top
— pop: remove top element

— top: get value of top element

What information is on the
interface?

What are the secrets?
What information is missing?
Why is this an abstraction?

CIS 422/522 Winter 2014 20

A Simple Module

A simple integer stack
The interface specifies what a
programmer needs to know to use
the stack correctly, e.g.

— push: push integer on stack top

— pop: remove top element

— top: get value of top element
The secrets (encapsulated) any
details that might change from one
implementation to another

— Data structures, algorithms

— Details of class/object structure
A module spec is abstract:
describes the services provided but
allows many possible
implementations
Note: a real spec needs much more
than this (discuss later)

push (int)

CIS 422/522 Winter 2014 21

Why these properties?

Module Implementer Module User

+ The specification tells me + The specification tells me how
exactly what capabilities my to use the module’s services
module must provide to users correctly
| am free to implement it any | do not need to know anything
way | want to about the implementation

+ | am free to change the details to write my code
implementation if needed as + If the implementation changes,
long as | don’t change the my code stays the same
interface

Key idea: the abstract interface specification defines
a contract 1 a module’s d per and its users
that allows each to proceed independently

CIS 422/522 Winter 2014 22

CIS 422/522

Is a module a class/object?

+ The programming language concepts of classes and
objects are based on Parnas’ concept of modules
» To separate design-time concerns from coding
issues, however, they are not the same thing
— A module must be a work assignment at design time, does
not dictate run-time structures
— Coder free to implement with a different class structure as
long as the interface capabilities are provided
— Coder free to make changes as long as the interface does
not change
+ In simple cases, we will often implement each
module as a class/object

CIS 422/522 Winter 2014 23

Questions?

